

DIGITAL WORKPLACES, ERGONOMICS IN VOCATIONAL TRAINING

WPN° 3 Observatory

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Education and Culture Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Education and Culture Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.

This work is licensed by the LCAMP Partnership under a Creative Commons Attribution-NonCommercial 4.0 International License.

LCAMP partners:

TKNIKA – Basque VET Applied Research Centre, CIFP Miguel Altuna LHII, DHBW Heilbronn – Duale Hochschule, Baden-Württemberg, Curt Nicolin High School, AFM – Spanish Association of Machine Tool Industries, EARLALL – European Association of Regional & Local Authorities for Lifelong Learning, FORCAM, CMQE: Association campus des métiers et des qualifications industrie du future, MV: Mecanic Vallée, KIC: Knowledge Innovation Centre, MADE Competence Centre Industria 4.0; AFIL: Associazione Fabbrica Intelligente Lombardia, SIMUMATIK AB; Association HVC Association of Slovene Higher Vocational Colleges; TSCMB:Tehniški šolski center Maribor, KPDoNE: Kocaeli Directorate Of National Education; GEBKİM OIZ and CAMOSUN college.

Document summary

Document Type:	Public report
Title	Digital workplaces, ergonomics vocational training
Author/S	Mikel AYANI
Reviewer	Camille LEONARD
Date	December 2024
Document Status	Final
Document Level	Confidential until its publication
Document Description	This document describes the main features of the trends in advanced manufacturing and insights for VET
Cite This Deliverable As:	Ayani, M. Digital workplaces, ergonomics in vocational training. (LCAMP4.0 Deliverable D3.2 Decembre 2024)
Document Level	Public

Version management

Version	Date	Action
0.1	2023-06-15	Draft version, lay out defined
0.5	2023-09-15	Draft version with partners contributions
0.8	2023-10-30	Final version for internal revision
0.9	2023-11-14	Final version for revision process
0.95	2024-11-10	Approval by the steering committee
1	2024-12-09	Version to be uploaded to the EU portal

GLOSSARY AND/OR ACRONYMS

Al - Artificial Intelligence

AM - Advanced Manufacturing

Cedefop - European Centre for the Development of Vocational Training

CoVE - Centres of Vocational Excellence

EAfA - European Alliance for Apprenticeships

EC - European Commission

ECVET - European Credit System for Vocational Education and Training

EntreComp - The Entrepreneurship Competence Framework

EQAVET - European Quality Assurance in Vocational Education and Training

EQF - European Qualifications Framework

ESCO - European Skills, Competences and Occupations

ETF - European Training Foundation

EU - European Union

HE - Higher Education

HVET - Higher Vocational Education and Training

14.0 - Industry 4.0

KET - Key Enabling Technology

OECD - Organisation for Economic Cooperation and Development

SME - Small and Medium Enterprises

SWOT - Strengths, Weaknesses, Opportunities, Threats

TVET - Technical and Vocational Education and Training

VET - Vocational Education and Training

WBL - Work Based Learning

CONTENT TABLE

CO	NTENT T	ABLE	5
		SUMMARY	
1.	INTROD	DUCTION	7
		DIGITAL WORKPLACES, ERGONOMICS IN VOCATIONAL TRAINING	
2	.1 Bac	kground and context	8
2	.2 Erg	onomics in Smart Manufacturing:	9
	2.2.1	Benefits and Advantages	
	2.2.2	Challenges and Limitations	
	2.2.3	Applications and Use Cases	
	2.2.4	Future Perspective	10
2	.3 Digi	ital Workspaces in Smart Manufacturing	10
	2.3.1	Definition and Types	10
	2.3.2	Benefits and Advantages	11
	2.3.3	Challenges and Limitations	11
	2.3.4	Applications and Use Cases	12
	2.3.5	Future Perspective	12
3.	CONCL	USION	13
3	.1 Imp	ortance of digital workspaces andergonomics in vocational training education	n.13
	3.1.1	Recommendations and next steps	14
4.	INDEX (OF REFERENCES	15

EXECUTIVE SUMMARY

Advanced Manufacturing (AM) and Higher Vocational Education and Training (HVET) need to update training, implement new technologies, and get quick access to data. The causes behind these needs are technological factors (Industry 4.0), factors conditioned by education systems and education methodologies, social factors and environmental factors (the European Green Deal with its emphasis on the greening industry).

Under the CoVE initiative, the LCAMP project aims to support regional skill ecosystems and various stakeholders in providing new skills and implementing new or updated technologies in VET centres. LCAMP will tackle this by incorporating a permanent European Platform of Vocational Excellence for Advanced Manufacturing.

By collaborating across borders, LCAMP's goal is to support and empower regional Advanced Manufacturing CoVEs to become more resilient, innovative, and better equipped to train, upskill, and reskill young and adult students, to successfully face the digital and green transitions. We will help European regions and countries grow and be more competitive through their VET systems.

Therefore, the LCAMP OBSERVATORY is one of the services in the LCAMP platform. The observatory is led by the French cluster Mecanic Vallée and the French VET provider Campus des Métiers et des Qualifications d'Excellence Industrie du Futur.

This present document details the first results of the LCAMP Observatory, through the methodology that the LCAMP consortium used to set up and run the Observatory. We had set up a process cycle for the observation consisting of 5 stages:

- Stage 1: Diagnosis and priority
- Stage 2: Search and information gathering
- Stage 3: Information Analysis
- Stage 4: Creating value. Elaboration of LCAMP reports
- Stage 5: Dissemination and communication.

1. INTRODUCTION

The LCAMP observatory is one of the services of the LCAMP platform.

The LCAMP Observatory must be a reliable and easily accessible source of information and data for trainers, VET teachers, and professionals, updated on Digital / Advanced Manufacturing / Smart Industry, delivered through a multimedia and interactive platform - LCAMP platform-, that can be customized according to individual interests (Work in progress in WP8).

This observatory must feed other Work packages (WP), for instance, WP 5 on Learner Centric Training, or Open innovation Community in the WP4.

In a first document about methodology, are set up a process cycle for the observation consisting in 5 stages:

- Stage 1: Diagnosis and priority
- Stage 2: Search and information gathering
- Stage 3: Information Analysis
- Stage 4: Create value. Elaboration of LCAMP reports
- Stage 5: Disseminate-communicate.

Following this process cycle, are detailed the main aspects of the observation methodology:

- Identify reliable sources that we can find in Europe about Advanced Manufacturing.
- Classify and filter data gathered from different sources.
- Present several ways to collect data and to analyse them.
- Define the methods for the creation of annual reports.
- Validate process for those reports.

The observatory will publish periodical reports for VET and HVET target audiences about technology trends, labour market changes, skill needs, and occupations in Advanced Manufacturing. It is expected that SMEs, industry clusters and other associations will also find valuable information in the observatory.

The publication of a yearly report is planned.

- Report 1: June 2023,
- Report 2: June 2024,
- Report 3: June 2025.

This first annual report is gathering sub-reports written by around twenty different writers, from the main partners involved in the LCAMP project. 39 Topics were determined, and 22 TOPICS were analysed and worked on during this first period.

2. TOPIC: DIGITAL WORKPLACES, ERGONOMICS IN VOCATIONAL TRAINING

The purpose of this chapter is to present some of the development areas related to AM. These are topics that concern all or some of the stakeholders

- CoVEs and VETs: teachers, trainers and heads of VET schools;
- Learners: students, active workers, job seekers;
- Companies;
- Policy makers and other stakeholders.

2.1 BACKGROUND AND CONTEXT

The emergence of Industry 4.0 has brought significant changes in the manufacturing sector, including the increasing adoption of digital technologies and automation systems. As a result, the nature of work has also evolved, creating new challenges and opportunities for workers and companies alike. In this context, digital workplaces and ergonomics play a crucial role in ensuring that workers can adapt to the changing work environment and perform their tasks safely and efficiently.

Digital workplaces refer to the use of digital technologies to enable employees to perform their work remotely or on-site, using digital tools and platforms. These technologies include mobile devices, cloud-based applications, collaborative software, and virtual reality tools, among others. Digital workplaces can help companies improve productivity, reduce costs, and increase employee satisfaction and engagement (Kossek et al., 2017).

Ergonomics, on the other hand, is the science of designing work environments, tools, and systems to fit the physical and cognitive abilities of workers. Ergonomic design aims to optimize human performance, prevent injuries and health problems, and improve well-being and satisfaction at work (Karwowski, 2006). In the context of smart manufacturing and Industry 4.0, ergonomic design is critical to ensure that workers can adapt to new technologies and work processes without experiencing physical or mental strain.

Vocational education plays a crucial role in preparing workers for the changing work environment in smart manufacturing and Industry 4.0. Vocational education and training

(VET) programs can provide workers with the necessary skills and competencies to operate digital technologies and work in ergonomic environments. VET programs can also help companies identify and address the challenges and opportunities of digital workplaces and ergonomic design (Cedefop, 2020).

2.2 ERGONOMICS IN SMART MANUFACTURING:

Smart manufacturing is transforming the industrial landscape by integrating advanced technologies such as the Internet of Things (IoT), big data analytics, and artificial intelligence (AI). While these technologies bring significant benefits to manufacturers, they also present new challenges related to ergonomics in the workplace.

2.2.1 BENEFITS AND ADVANTAGES

The benefits of incorporating ergonomics into smart manufacturing are significant. By ensuring the health and safety of workers, companies can reduce the risk of workplace injuries and accidents, improve worker satisfaction and well-being, and increase productivity and efficiency.

The benefits of incorporating ergonomics into smart manufacturing are significant. By ensuring the health and safety of workers, companies can reduce the risk of workplace injuries and accidents, improve worker satisfaction and well-being, and increase productivity and efficiency.

2.2.2 CHALLENGES AND LIMITATIONS

There are also challenges and limitations to incorporating ergonomics into smart manufacturing. For example, there may be a lack of knowledge and awareness of ergonomic principles among workers and management. Additionally, the cost of implementing ergonomic solutions and training programs can be a barrier for some organizations.

Another challenge is the need for interdisciplinary collaboration between engineers, designers, and ergonomics experts to ensure that ergonomic considerations are incorporated into the design and development of products and systems.

2.2.3 APPLICATIONS AND USE CASES

Ergonomics is critical to the success of smart manufacturing. It ensures the health and safety of workers and promotes their productivity and well-being. Some of the applications and use cases of ergonomics in smart manufacturing include:

- Designing workstations and equipment that are ergonomic and user-friendly
- Incorporating sensors and wearables to monitor workers' health and well-being
- Providing workers with real-time feedback on their posture and movements
- Using data analytics to identify ergonomic risks and optimize workflows.

2.2.4 FUTURE PERSPECTIVE

As smart manufacturing continues to evolve, ergonomics will play an increasingly important role in ensuring the health and safety of workers and promoting their well-being and productivity. New technologies such as wearables and AI will provide new opportunities for monitoring and optimizing ergonomic conditions in the workplace.

Furthermore, the integration of ergonomic principles into the design and development of products and systems will become an essential factor in the success of smart manufacturing, driving innovation and improving customer satisfaction.

2.3 DIGITAL WORKSPACES IN SMART MANUFACTURING

2.3.1 DEFINITION AND TYPES

Digital workplaces are a fundamental aspect of smart manufacturing. They are defined as a combination of physical and virtual environments where workers use digital tools and platforms to carry out their work. The use of digital workplaces allows companies to optimize their operations, enhance their productivity, and provide employees with more flexibility in their workactivities.

There are several types of digital workplaces, including:

- Mobile workplaces: These are workplaces where workers can use mobile devices such as smartphones or tablets to perform their tasks. Mobile workplaces enable employees to work from anywhere and at any time, increasing their productivity and flexibility.
- Cloud-based workplaces: These are workplaces where workers use cloud-based applications to access and share data and documents. Cloud-based workplaces

allow employees to collaborate in real-time and access their work from anywhere with an internet connection.

- Collaborative workplaces: These are workplaces where workers use collaborative software to communicate and collaborate on projects. Collaborative workplaces promoteteamwork, knowledge-sharing, and innovation.
- Virtual workplaces: These are workplaces where workers use virtual reality tools to simulate work environments and carry out their tasks. Virtual workplaces provide workers with a safe and immersive environment to learn and practice new skills.

2.3.2 BENEFITS AND ADVANTAGES

The adoption of digital workplaces in smart manufacturing can bring several benefits and advantages, such as:

- 1. Increased productivity: Digital workplaces can help workers perform their tasks more efficiently, reducing the time and effort required to complete them.
- Enhanced flexibility: Digital workplaces can enable workers to work from anywhere and at any time, providing them with more flexibility in their work activities.
- 3. Improved communication and collaboration: Digital workplaces can facilitate communication and collaboration among workers, improving teamwork, knowledge- sharing, and innovation.
- 4. Enhanced employee satisfaction and engagement: Digital workplaces can provide workers with a better work-life balance and increase their job satisfaction and engagement.

2.3.3 CHALLENGES AND LIMITATIONS

Despite the benefits and advantages of digital workplaces, their adoption in smart manufacturing an also pose several challenges and limitations, such as:

- 1. Cybersecurity risks: Digital workplaces can expose companies to cybersecurity threats, such as data breaches or hacking attacks.
- 2. Skill gaps: The adoption of digital workplaces requires workers to have specific digitalskills and competencies, which may not be available in the current workforce.
- 3. Resistance to change: The adoption of digital workplaces can face resistance fromworkers who may be reluctant to change their work habits or learn new technologies.

4. Costs: The adoption of digital workplaces may require significant investments in digital technologies and infrastructure, which may be a barrier for some companies.

2.3.4 APPLICATIONS AND USE CASES

Digital workplaces can be applied in several areas of smart manufacturing, such as:

- 1. Digital supply chain: Digital workplaces can help companies manage their supply chainmore efficiently, by enabling real-time tracking and monitoring of products and materials.
- 2. Digital production: Digital workplaces can help companies optimize their production processes, by providing real-time data and insights on the performance of machines and equipment.
- 3. Digital maintenance: Digital workplaces can help companies improve their maintenance processes, by enabling real-time monitoring and diagnosis of equipment and systems.
- 4. Digital training: Digital workplaces can provide workers with immersive and interactive training experiences, using virtual reality tools and simulations.

2.3.5 FUTURE PERSPECTIVE

The adoption of digital workplaces in smart manufacturing is expected to continue growing in the coming years, driven by the increasing demand for productivity, flexibility, and innovation. However, the successful implementation of digital workplaces will require companies to address the challenges and limitations posed by these technologies, and invest in the necessary skills and competencies of their workforce. Vocational education and training programs.

3. CONCLUSION

3.1 IMPORTANCE OF DIGITAL WORKSPACES AND ERGONOMICS IN VOCATIONAL TRAINING EDUCATION

In the context of smart manufacturing and Industry 4.0, digital workplaces and ergonomics play a critical role in promoting worker health and safety, productivity, and innovation. The integration of digital technologies into work environments has created new opportunities for flexibility, mobility, and collaboration, but also presents new challenges related to ergonomics that must be addressed.

This report has explored the importance of digital workplaces and ergonomics in smart manufacturing, including their applications and use cases, benefits and advantages, challenges and limitations, and future perspective. It has been shown that by incorporating ergonomic principles into digital work environments, companies can promote worker health and safety, reduce the risk of injuries and accidents, and improve productivity and efficiency. Furthermore, digital technologies can enhance the usability and functionality of workstations and equipment, improving the overall user experience and driving innovation and competitiveness.

In the context of vocational education, the integration of digital workplaces and ergonomics in smart manufacturing can also play a critical role in preparing the workforce for the jobs of the future. By incorporating ergonomic principles and digital technologies into vocational education and training programs, students can learn the skills and knowledge necessary to thrive in a rapidlychanging manufacturing landscape.

However, the integration of digital workplaces and ergonomics in smart manufacturing also presents challenges, such as the need for significant investments in infrastructure, training, and support. Additionally, the use of digital technologies may lead to increased sedentary behavior and decreased physical activity, which can have negative impacts on worker health.

To overcome these challenges and fully realize the potential benefits of digital workplaces and ergonomics in smart manufacturing, organizations and vocational education institutions must prioritize the implementation of ergonomic practices and technologies, invest in infrastructure and training, and prioritize worker health and safety.

In conclusion, the integration of digital workplaces and ergonomics in smart manufacturing is a critical factor in the success of Industry 4.0, promoting worker health and safety, productivity, and innovation. By prioritizing ergonomic considerations and investing in digital technologies and infrastructure, organizations and vocational education institutions can improve worker satisfaction and well-being, drive innovation, and prepare the workforce for the jobs of the future.

3.1.1 RECOMMENDATIONS AND NEXT STEPS

To fully leverage the capabilities of digital workplaces and ergonomics in vocational training education, the following recommendations and next steps are suggested:

- Integrate ergonomic principles and digital technologies into vocational education and training programs: By incorporating ergonomic principles and digital technologies into vocational education and training programs, students can learn the skills and knowledge necessary to thrive in a rapidly changing manufacturing landscape. This includes training in ergonomics, human factors, and digital technologies, as well as hands-on experience with digital workstations and equipment.
- Invest in infrastructure and equipment: To fully leverage the capabilities of digital
 workplaces and ergonomics in vocational education, institutions must invest in the
 necessary infrastructure and equipment. This includes providing access to state-ofthe- art digital workstations, equipment, and software, as well as ensuring that the
 physical environment is designed with ergonomics in mind.
- Prioritize worker health and safety: While digital workplaces and ergonomics can
 provide many benefits, they also present new challenges related to worker health and
 safety. Institutions must prioritize worker health and safety by incorporating ergonomic
 principles into the design of work environments, providing training in ergonomic
 practices, and ensuring that workers have access to the necessary tools and
 resources to maintain their health and well-being.
- Foster collaboration and innovation: Digital workplaces and ergonomics can enhance collaboration and innovation by providing workers with the tools and technologies necessary to work together effectively and efficiently. Institutions can foster collaboration and innovation by creating a culture of openness, collaboration, and continuous learning.
- Continuously evaluate and improve vocational education programs: To ensure that vocational education programs remain relevant and effective, institutions must continuously evaluate and improve their programs. This includes soliciting feedback from
- students, employers, and industry experts, and incorporating that feedback into the design of programs.
- By following these recommendations and taking these next steps, institutions can fully leverage the capabilities of digital workplaces and ergonomics in vocational education, preparing students for the jobs of the future and driving innovation and competitiveness in the manufacturing industry.

4. INDEX OF REFERENCES

- Cedefop. (2020). Vocational education and training in Europe: Impact of the coronavirus (COVID-19) crisis. Publications Office of the European Union.
- Dul, J., & Neumann, W. P. (2020). Ergonomics in the digital age. Ergonomics, 63(1), 1-3.
- Ghobakhloo, M., Hong, T. S., & Sabouri, M. S. (2021). Industry 4.0 and the current status as well as the future of smart manufacturing: A systematic literature review. International Journal of Production Research, 59(18), 5577-5599.
- International Labour Organization (ILO). (2017). Ergonomic design for people at work: Vol. 1: Principles and guidelines. Geneva: International Labour Office.
- Jazdi, N. (2014). Cyber physical systems in the context of Industry 4.0. IEEE International Conference on Automation, Quality and Testing, Robotics, pp. 1-4. Retrieved from https://ieeexplore.ieee.org/document/7051229
- Kagermann, H., Wahlster, W., & Helbig, J. (2013). Recommendations for implementing the strategic initiative INDUSTRIE 4.0. Final report of the Industrie 4.0 Working Group. Retrieved from https://www.acatech.de/wp-content/uploads/2018/03/Recommendations_for_Implementing_the_Strategic_Initiative INDUSTRIE 4.0.pdf
- Karwowski, W. (2006). Ergonomics and human factors: The paradigms for science, engineering, design, technology and management of human-compatible systems. Ergonomics, 49(9), 907-914.
- Karwowski, W. (Ed.). (2017). Encyclopedia of Human Factors and Ergonomics (2nd ed.). CRC Press.
- Kossek, E. E., Baltes, B. B., Matthews, R. A., DeMarr, B. J., & Doherty, K. R. (2017). The future of work and its implications for workers' well-being. American Psychologist, 72(4), 463-476.
- Lee, H., Park, H., & Kim, J. (2019). Smart manufacturing performance: The impact of digital technology integration on manufacturing performance. International Journal of Precision Engineering and Manufacturing-Green Technology, 6(6), 1249-1257.
- Lee, J., Bagheri, B., & Kao, H. A. (2015). A cyber-physical systems architecture for Industry 4.0-based manufacturing systems. Manufacturing Letters, 3, 18-23.
- National Institute for Occupational Safety and Health (NIOSH). (2020). Digital workplaces. Retrieved from https://www.cdc.gov/niosh/topics/digitalworkplace/default.html
- National Institute for Occupational Safety and Health (NIOSH). (2020). Ergonomics and human factors. Retrieved from https://www.cdc.gov/niosh/topics/ergonomics/default.html
- Schlick, C. M., Grosse, E. H., & Scheffer, C. (2019). Ergonomics and human factors in Industry 4.0: A review of current trends and future directions for sustainable production and logistics. Sustainability, 11(7), 1888.
- Varghese, R., Venkatesh, V. G., & Ramesh, A. (2018). IoT-enabled smart manufacturing: A review on technology and research challenges. Journal of Manufacturing Systems, 48, 142-158.
- Vom Brocke, J., Schmiedel, T., Recker, J., Trkman, P., Mertens, W., & Viaene, S. (2021). Revisiting the role of digitalization in business process management. Journal of Information Technology, 36(1), 4-21.
- Winkel, J., & Kallehave, T. (2019). Digitalization and ergonomics in production. In Proceedings of the 20th Congress of the International Ergonomics Association (pp. 238-248).

Learner Centric Advanced Manufacturing Platform

Co-funded by the European Union

Funded by the European Union. Views and opinions expressed are however those of the author(s) only and do not necessarily reflect those of the European Union or the European Education and Culture Executive Agency (EACEA). Neither the European Union nor EACEA can be held responsible for them.