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EXECUTIVE SUMMARY 
Advanced Manufacturing (AM) and Higher Vocational Education and Training (HVET) 
need to update training, implement new technologies, and get quick access to data.  

The causes behind these needs are technological factors (Industry 4.0), factors 
conditioned by education systems and education methodologies, social factors and 
environmental factors (the European Green Deal with its emphasis on the greening 
industry).  

 

Under the CoVE initiative, the LCAMP project aims to support regional skill ecosystems and 
various stakeholders in providing new skills and implementing new or updated technologies in 
VET centres. LCAMP will tackle this by incorporating a permanent European Platform of 
Vocational Excellence for Advanced Manufacturing.   

By collaborating across borders, LCAMP’s goal is to support and empower regional Advanced 
Manufacturing CoVEs to become more resilient, innovative, and better equipped to train, upskill, 
and reskill young and adult students, to successfully face the digital and green transitions. We 
will help European regions and countries grow and be more competitive through their VET 
systems. 

Therefore, the LCAMP OBSERVATORY is one of the services in the LCAMP platform. The 
observatory is led by the French cluster Mecanic Vallée and the French VET provider Campus 
des Métiers et des Qualifications d’Excellence Industrie du Futur.  

This present document details the first results of the LCAMP Observatory, through the 
methodology that the LCAMP consortium used to set up and run the Observatory. We had set 
up a process cycle for the observation consisting of 5 stages: 

- Stage 1: Diagnosis and priority 
- Stage 2: Search and information gathering 
- Stage 3: Information Analysis 
- Stage 4: Creating value. Elaboration of LCAMP reports 
- Stage 5: Dissemination and communication. 
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1. INTRODUCTION 
 

The LCAMP observatory is one of the services of the LCAMP platform.  

The LCAMP Observatory must be a reliable and easily accessible source of information and 
data for trainers, VET teachers, and professionals, updated on Digital / Advanced Manufacturing 
/ Smart Industry, delivered through a multimedia and interactive platform -LCAMP platform-, that 
can be customized according to individual interests (Work in progress in WP8).   

This observatory must feed other Work packages (WP), for instance, WP 5 on Learner Centric 
Training, or Open innovation Community in the WP4.  

In a first document about methodology, are set up a process cycle for the observation consisting 
in 5 stages: 

- Stage 1: Diagnosis and priority 
- Stage 2: Search and information gathering 
- Stage 3: Information Analysis 
- Stage 4: Create value. Elaboration of LCAMP reports 
- Stage 5: Disseminate-communicate. 

Following this process cycle, are detailed the main aspects of the observation methodology: 

- Identify reliable sources that we can find in Europe about Advanced Manufacturing. 
- Classify and filter data gathered from different sources. 
- Present several ways to collect data and to analyse them. 
- Define the methods for the creation of annual reports. 
- Validate process for those reports. 

 

The observatory will publish periodical reports for VET and HVET target audiences about 
technology trends, labour market changes, skill needs, and occupations in Advanced 
Manufacturing. It is expected that SMEs, industry clusters and other associations will also find 
valuable information in the observatory. 

The publication of a yearly report is planned. 

 Report 1: June 2023, 
 Report 2: June 2024,  
 Report 3: June 2025. 

This first annual report is gathering sub-reports written by around twenty different writers, from 
the main partners involved in the LCAMP project. 39 Topics were determined, and 22 TOPICS 
were analysed and worked on during this first period.   
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2. TECHNOLOGY TRENDS IN 
ADVANCED MANUFACTURING 

The purpose of this chapter is to present some of the development areas related to AM.  

These are topics that concern all or some of the stakeholders 

 CoVEs and VETs: teachers, trainers and heads of VET schools; 
 Learners: students, active workers, job seekers; 
 Companies; 
 Policy makers and other stakeholders 

 

1.1 DIGITALIZATION OF 
MANUFACTURING PROCESSES 

Adapting to increasingly digital market environments and levering digital technologies to improve 
operations and drive new customer value are important goals for nearly all contemporary 
businesses. This is the reason why companies are beginning to make the necessary changes 
to adapt their organisation to a digital environment. Organisations are beginning to progress 
digitally and that mature digitally are more likely to experiment and iterate, this experimentation 
and iteration are key for companies to respond to digital disruption. 
Established companies must figure out how to experiment to compete in the future, while at the 
same time working to find the best professionals to fill those jobs. 

2.1.1 INTRODUCTION 

The Digital Transformation, initiated with the fourth industrial revolution, continues unstoppable 
in the machine tool sector and is allowing new intelligence to be incorporated into machines and 
generating new digital business models based on digital services that are in turn, generating 
new value propositions, innovative income generation models and new configurations of the 
digital value network. The efforts made by Basque companies and institutions to adopt the fourth 
industrial revolution have made it possible to place Basque machine tools in the state of art, 
strengthen their position in the market and grow their business and employment figures in recent 
years. It is a reality that digitization is increasingly present in our companies. That is why in order 
to face the advances that are being presented in this matter, we must train students with 
knowledge in these technologies through their training. 
Data science, for example, is a discipline with many years of development. Despite the fact that 
in recent years it has gained great prominence, it is a concept that was coined in the 60s for the 
first time. Since the birth of the 4.0 paradigm, many companies have carried out initiatives to 
collect data in their workshops and plants, treat them, analyse them using advanced techniques 
and use them for decision making or to generate new or better ones. 
However, both experts and large consultancies agree that horizontal integration in the value 
chain is a pending issue in the industry. The Industrie 4.0 platform itself, a forerunner of the 
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industry 4.0 concept, includes in one of its latest publications on Asset Administration Shell, from 
October 2020, the importance of exchanging information between partners in 4.0 value chains. 
It has even held monographic Webinars addressing how added value can be generated through 
collaboration between companies on topics such as Condition Monitoring of machines and 
components. 
 

2.1.2 TECHNOLOGY TRENDS  

Sensoring of manufacturing processes 

A global deployment of 5G technology, in which data can be transmitted anywhere in the world 
without latency, eliminates the need for distributed edge computing, enabling lower costs for 
data storage and management on servers in the cloud. However, such a global deployment may 
take many years and a gradual 5G network deployment scenario must involve Edge Computing 
modules that use 5G technology locally on a machine or in a factory, and that these modules 
are designed in such a way that the transition to global 5G is gradual and non-traumatic. 
Therefore, there is a challenge to integrate new 5G sensors into Edge Computing modules, 
support the highest bandwidth or number of locally connected devices and ease the transition 
to a future global 5G network. 

Assuming a higher number of connections as a higher bandwidth in an edge computing module 
could be realised with more powerful and expensive hardware, but a more economical solution 
is the inclusion of intelligence in the edge computing module so that the configuration of the 
bandwidths of each signal and the storage capacity is adaptively set by an artificial intelligence 
module. The challenge in this area will be to adapt the telecommunication network to the 
characteristics of the processes being controlled or monitored.   

In the following, the most representative state-of-the-art advanced solutions for machine 
condition monitoring in the manufacturing machine sector are presented by international 
reference manufacturers: 

Makino's Health MaximizerTM (MHmaxTM) 1is a solution for predictive and proactive monitoring 

of machine health, using integrated sensors and software monitoring to help predict likely 
failures before they occur. The system includes the monitoring of four critical subsystems of the 
machine: the spindle is monitored through vibrations recorded by an integrated high frequency 
accelerometer; in the cooling system all lines are monitored; the hydraulic circuit is analysed for 
pressure and temperature; finally, for the tool change system, the actual physical position of the 
spindle is monitored and compared with the theoretical one. The system generates warnings 
and alarms in case of health incidents of the monitored components. 

 

 

1 Predictive and Proactive Machine Health Technology - MHmax, 2019, 
https://www.youtube.com/watch?v=VSkTMQw_Ubg. 
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The development of MHmaxTM is based on data recorded during fifteen years of customer 
support in different production scenarios, from which the main causes and alarm symptoms of 
unplanned machine stoppages were identified. 

 

Figure 1 Health MaximizerTM (MHmaxTM) of Makino 2 

Makino offers three levels of machine connectivity for the MHmax: With no external connection, 
the information provided by the system remains in the machine control; With plant-level 
connectivity, allowing access to system information from any connected machine with 
permissions; With connection to the external cloud and the ability to transmit information to 
Makino's technical team who provide technical support and help in deciding proactive actions. 

Okuma presents a solution integrated into the machine control for artificial intelligence diagnosis 

of the condition of the main spindle and linear axes3. It provides self-diagnosis of the bearing 

health status of these components through AI analysis of vibration recorded in specific motion 
cycles. The condition of the components is displayed on the machine control by means of traffic 
light colour coding, and the degree of normality is also provided as a numerical value. 

 
Figure 2. Diagnosis of the electro spindle and linear axes through Okuma´s AI 4 

Regarding the condition of machine geometric accuracy, Okuma has developed the Thermo-

Friendly Concept5, a control solution powered by temperature sensors distributed in the 

 

2 Predictive and Proactive Machine Health Technology - MHmax. 
3 « The Next-Generation Intelligent CNC OSP Suite [OSP-P300A] | Technology & Solutions Okuma Smart 
Factory », OKUMA CORPORATION, s. d., https://www.okuma.co.jp/english/smart-factory/osp-
suite/index.html. 
4 « The Next-Generation Intelligent CNC OSP Suite [OSP-P300A] | Technology & Solutions Okuma Smart 
Factory ». 
5 Okuma’s Intelligent Technology - Thermo-Friendly Concept, 2015, 
https://www.youtube.com/watch?v=3er2OHlq9Bc. 



 

 
 

 

CoVEs for Advanced Manufacturing | #LCAMP_EU 
11 
 

machine, to compensate for oscillations caused by temperature and achieve high dimensional 
stability in long-term continuous machine use. In addition to achieving high accuracy, the system 
saves time and costs, as machine warm-up and manual adjustment of thermal conditions are 
eliminated. 

 
Figure 3. Thermo-Friendly Concept of Okuma 6 

In the same field of precision machine condition, Okuma's 5-Axis Auto Tuning function7 is a 

solution to compensate for geometrical errors that occur during the manufacture and assembly 
of machines and during the life of the machine due to wear and ageing. The application detects 
the actual machine geometry through a touch probe and established measurement procedure, 
and compensates for errors through a calibration function, improving the dimensional quality of 
machined parts. 

 
Figure 4. 5-Axis Auto Tuning of Okuma 8 

Mazak has developed the Spindle Analytics application9, which analyses the status of the electro 

spindle by monitoring its temperature, vibrations and displacements, with the aim of preventing 

problems and reducing production stoppages. In addition, Mazak offers its customers the 

 

6 Okuma’s Intelligent Technology - Thermo-Friendly Concept. 
7 Okuma’s Intelligent Technology - 5-Axis Auto Tuning System, 2015, 
https://www.youtube.com/watch?v=CcGqxaFnl5M. 
8 Okuma’s Intelligent Technology - 5-Axis Auto Tuning System. 
9 « Artificial Intelligence Makes Spindle Health Monitoring a Reality », 2019, 
https://www.mazakusa.com/news-events/blog/artificial-intelligence-makes-spindle-health-monitoring-a-
reality/. 
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service of remotely monitoring the performance of the machine, in order to alert the customer of 
possible problems and provide technical assistance.     

 
Figure 5. Spindle Analytics of Mazak 10 

The Condition Analyzer function of DMG MORI11 12 monitors the condition of certain machine 
components by analysing the data recorded by sensors. The results are provided both on the 
machine control as well as on PC, tablet or smart phone devices. The aim is to reduce 
unexpected machine downtime through preventive maintenance. In addition, it allows the quality 
of the manufactured parts to be improved thanks to the possibility of optimising processes based 
on the information recorded by the sensors. 

The components included in the supervision are: The electro spindle, of which the unbalance, 
the condition of the bearings and the vibration level are monitored through an integrated 
accelerometer, the thermal expansion which is automatically detected and compensated, the 
clamping force of the tool with predefined measurement cycles and an external sensor type 
power check and the lubrication through automatic lubrication cycles; The cooling system to 
ensure that the flow rate is adequate for proper cooling; The pneumatic system to detect possible 
leaks. 

 
Figure 6. Condition Analyzer of DMG MORI 13 14 

DMG MORI introduces the concept of the geometric fingerprint, or characteristic fingerprint of 
the machine's geometric accuracy condition. Its Volumetric Calibration System (VCS) 

application15 is a solution for automated periodic checking of the machine's volumetric 

positioning accuracy, with the implementation of a contact inspection probe and a set 
measurement cycle that runs through the entire working volume.  In addition to determining 

 

10 « Artificial Intelligence Makes Spindle Health Monitoring a Reality ». 
11 « Monitoring », s. d., https://es.dmgmori.com/productos/digitization/integrated-digitization/monitoring. 
12 « DMG MORI France - Machines-outils CNC pour toutes les applications de l’enlèvement de matière », 
2023, https://fr.dmgmori.com/. 
13 « Monitoring ». 
14 « DMG MORI France - Machines-outils CNC pour toutes les applications de l’enlèvement de matière ». 
15 « DMG MORI France - Machines-outils CNC pour toutes les applications de l’enlèvement de matière ». 
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accuracy, the VCS solution allows for compensation of position and angle errors through 
machine control. 

 

 
Figure 7. Volumetric Calibration System (VCS) of DMG MORI16 

DMG MORI also offers its customers a remote technical assistance service, NETservice17, 
which includes a 5G WIFI camera to transmit images of the machine in streaming, with the high-
resolution rate, flexible connectivity, speed and security offered by 5G technology. 

 
Figure 8. NETservice of DMG MORI 18 

Hermle's Wear Diagnosis System19 includes the analysis of the feed behaviour and frequency 

spectrum of linear and rotary axes, the evaluation of relevant data from sensors integrated in 
the machine, the calculation of the vibrations of the electro spindle, the monitoring of the 
machine's accuracy and the monitoring of the temperatures of the drive motors. Associated with 
this machine condition monitoring system, Hermle offers its customers the service of analysis 
and diagnosis of all these data by a qualified technician. 

Siemens' approach to machine condition monitoring, Analyze MyMachine/Condition20, 
combines high-frequency computing at the edge with long-term trajectory monitoring in the 
cloud. Its solution establishes a series of dedicated tests for the acquisition of certain control 

 

16 « DMG MORI France - Machines-outils CNC pour toutes les applications de l’enlèvement de matière ». 
17 « Service », s. d., https://es.dmgmori.com/productos/digitization/integrated-digitization/service. 
18 « Service ». 
19 KMS GmbH & Co KG http://www.kms-wirkt.de, « Maschinenfabrik Berthold Hermle AG - Módulos 
digitales », Text, Maschinenfabrik Berthold Hermle AG (Maschinenfabrik Berthold Hermle AG, 23 mai 
2023), https://www.hermle.de/es/centros_de_mecanizado/m%C3%B3dulos_digitales. 
20 « Siemens Machine Tool Days 2020 | Press | Company | Siemens », 2020, 
https://press.siemens.com/global/en/event/siemens-machine-tool-days-2020. 
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parameters under controlled machine condition conditions, parameters that are indicative of the 
machine health status. Among others, it includes obtaining the squareness error, friction or 
backlash of the machine axes. The analysis of the data consists of comparing the current values 
with those recorded at the time of installation of the machine, with the machine in perfect 
condition. The initial values form the so-called fingerprint of the machine and represent the 
normal reference values. 

The purpose of this functionality is to perform a periodic diagnosis of the machine's condition in 
order to establish corrective actions. It enables early detection of problems and increases 
machine availability, and opens up the possibility of new remote diagnostic services from the 
machine manufacturer to the customer.  

 
Figure 9 Analyze MyMachine/Condition of Siemens21 

In the scientific literature there are numerous research references on the condition of particular 
machine components, being especially notable those related to rotating components, such as 
ball screws or bearings, in which solutions for predictive maintenance of components based on 
the monitoring of machine control signals and integrated sensors, mostly accelerometers, are 

analysed22 23. 

However, there are fewer bibliographical references related to the condition of the machine as 
a whole, due to the fact that this is a more recent field of research:    

The research work described in24 proposes predictive machine maintenance based on 
Manufacturing Error Based Maintenance (MEBM), specifically by monitoring the machining 
backlash through machine control parameters. Also, a methodology for automated machine 
condition monitoring based on internal machine control parameters, without the need for 

 

21 « Siemens Machine Tool Days 2020 | Press | Company | Siemens ». 
22 Li Zhang et al., « A Deep Learning-Based Recognition Method for Degradation Monitoring of Ball Screw 
with Multi-Sensor Data Fusion », Microelectronics Reliability 75 (1 août 2017): 215‑22, 
https://doi.org/10.1016/j.microrel.2017.03.038. 
23 María Navarro Carmona, « Diagnóstico de fallos en rodamientos », 2016, 
https://ingemecanica.com/tutorialsemanal/objetos/tutorial215.pdf. 
24 Shengyu Shi et al., « Manufacturing-error-based maintenance for high-precision machine tools | 
SpringerLink », 2017, https://link.springer.com/article/10.1007/s00170-017-1070-y. 
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external sensors, is described in25. It is based on periodic comparison of machine axis 

parameters with reference values. The research work described in 26proposes the development 
of a predictive maintenance system for a milling machine based on web-services, with data 
acquisition from the CNC-PLC of the machine and statistical analysis of the variables. It 

introduces the concept of the no-load check cycle. Two research works27 28 propose the analysis 
of the health of the machine's spindle and linear axes through the analysis of electrical signals. 
They propose the use of an eMaintenance web platform to benefit from the exploitation of 
information from many machines. It introduces the concept of machine fingerprinting during the 

execution of a check cycle. The research work described in 29discusses the industrial 
applications of Machine Learning and presents a use case on the predictive maintenance of a 

machine head, based on its fingerprint. This other30 presents eMaintenance as a potential 
service of machine data access, explains how to use sensor-based tools and control data to 
increase the efficiency of diagnosis, prognosis and decision making in maintenance, and 
describes methods to solve the challenges of massive data recording and processing.  

In the field of EDM and additive manufacturing, machine condition has not been as high a priority 
as process control, because machines suffer less than with start-up processes. However, a 

recent work31 stands out in which the condition of some of the consumables of a wire EDM 
machine (filters, resins, contacts) is monitored by adapting new sensors with the aim of 
predicting their useful life. 

 

  

 

25 A. Verl et al., « Sensorless Automated Condition Monitoring for the Control of the Predictive 
Maintenance of Machine Tools », CIRP Annals 58, no 1 (2009): 375‑78, 
https://doi.org/10.1016/j.cirp.2009.03.039. 
26 Luca Fumagalli et Marco Macchi, « Integrating Maintenance within the Production Process through a 
Flexible E-Maintenance Platform », IFAC-PapersOnLine, 15th IFAC Symposium onInformation Control 
Problems inManufacturing, 48, no 3 (1 janvier 2015): 1457‑62, 
https://doi.org/10.1016/j.ifacol.2015.06.292. 
27 Susana Ferreiro et al., « Industry 4.0: Predictive Intelligent Maintenance for Production Equipment », 
2016, 
https://www.researchgate.net/publication/317066007_Industry_40_Predictive_Intelligent_Maintenance_f
or_Production_Equipment. 
28 Augustin Prado et al., « Health and Performances Machine Tool Monitoring Architecture » (International 
Workshop and Congress on eMaintenance : 17/06/2014 - 18/06/2014, Luleå tekniska universitet, 2014), 
139‑44, https://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-40402. 
29 Pedro Larranaga et al., Industrial Applications of Machine Learning, 2018, 
https://doi.org/10.1201/9781351128384. 
30 Diego Galar et Uday Kumar, eMaintenance: Essential Electronic Tools for Efficiency, 1st éd. (USA: 
Academic Press, Inc., 2017), https://dl.acm.org/doi/book/10.5555/3161422. 
31 G. Wälder et al., « Smart Wire EDM Machine », Procedia CIRP, 19th CIRP Conference on Electro 
Physical and Chemical Machining, 23-27 April 2017, Bilbao, Spain, 68 (1 janvier 2018): 109‑14, 
https://doi.org/10.1016/j.procir.2017.12.032. 
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Data collection, analysis of data 

Over the last 5 years and in the context of Industry 4.0, almost all manufacturing companies 
have, to a greater or lesser extent, undertaken actions aimed at integrating functionalities based 
on digital technologies. Today, there are many solutions available on the market for the 
acquisition and recording of machine data on which to build new services and new 
functionalities. Both machine manufacturers and component manufacturers have incorporated 
sensors into their products to increase the nature and type of data from machines and the 
processes they run, and have developed and incorporated functionalities based on this data. 

The application of AI techniques in manufacturing has made it possible to formalise complex 
multivariate knowledge of machine and process conditions. These tools enhance the work of 
the operator, which also increases his value as a technician. 

Continuous learning based on the experiences of machine use is a reality that is applied to 
strategies for continuous process improvement. 

The worker is provided with many more tools for assistance, diagnosis and optimisation, and 
can focus his efforts on increasing the value of the component and freeing himself from tasks 
that may not have a direct impact on production. It is also a fact that the incorporation of new 
technicians can be accelerated in a more efficient way. In short, more reliability, workers who 
see their jobs valued, increased overall machine safety and an impact on overall well-being. 

The massive generation of data through the IIoT and is giving Artificial Intelligence (AI) a huge 
boost in the industrial sector. Artificial Intelligence currently offers tremendous potential for 
industry, making production more efficient, more flexible and, above all, more reliable. 

An important lever in favour of AI deployment in industry has been the advent of high computing 
power as an asset available to all. This capability makes it possible to disentangle knowledge 
from massive ingestions of sensor data and new sources of unstructured data (images, text, 
video, etc.). All these new functionalities are a perfect fit in a sector with such varied needs as 
advanced manufacturing. 

As stated in the European Communication Artificial Intelligence for Europe, Artificial Intelligence 
refers to systems that display intelligent behaviour by analysing their environment and take 
actions with some degree of autonomy to achieve specific objectives. AI does not refer to a 
single technology, but refers to a set of different approaches, methods and technologies that 
demonstrate behaviour in different contexts. AI-based systems can be solely software-based, 
acting in the virtual world, or embedded in hardware devices. Machine Learning can be 
considered as a branch of AI, and is defined as "the set of methods that can automatically detect 
patterns in a data set and use them to predict future data, or to make other types of decisions in 
uncertain environments". In turn, Deep Learning is a branch of Machine Learning that, defined 
in its most basic aspect, can be explained as a probability system that allows computational 
models that are composed of multiple layers of processing to learn about data with multiple 
levels of abstraction. 

Currently, there are multiple machine learning techniques in the advanced manufacturing 
environment, depending on the type of information (structured or unstructured information) and 
the learning paradigm used. The choice of the technique to be applied depends, among others, 
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on the objective of the model to be built, as well as on the type of information available. 
Furthermore, it seems that the solution is probably not the use of a single technique for each of 
the problems, but rather combinations of several techniques. For intelligent environments, this 
has been the approach that has been adopted. 

One of the main advantages of AI is optimisation based on prescriptive analysis based on 
decision models. The use of machine learning for autonomous machine decision-making is one 
of the main goals of AI today. To date, developments have mainly focused on descriptive 
analytics and predictive maintenance tasks. Several of the techniques used in industry in this 
field are outlined below:  

 Fuzzy logic: for symbolic knowledge management and process diagnosis; this is a 
reasoning system based on logical expressions describing the membership of fuzzy or 
fuzzy sets. The diagnosis of the system is based on fuzzy rules and the detection of 
events of interest from fuzzy rules and fuzzy sets, defined from the available data. Its 
main utility is to manage easily interpretable symbolic knowledge, very close to natural 
language. It is compatible with automatic rule generation systems and can be useful for 
detecting faults or symptoms of future faults (corrective and predictive maintenance). 
This method allows predictive maintenance to be carried out if the input data used refer 
to the state of health of the system. Regarding its application in data diagnosis and 

prognosis, this article32 presents a diagnostic method based on fuzzy logic applied to the 

manufacturing sector. The results show better results in noisy data than standard 

models. In the work carried out by this work 33, diagnosis and fault detection is performed 

with the aim of reducing the number of false positives generated in an engine. 

 
Figure 10. Classic Logic vs Fuzzy Logic34 

 

32 Tung-Hsu (Tony) Hou et Chun-Chi Huang, « Application of Fuzzy Logic and Variable Precision Rough 
Set Approach in a Remote Monitoring Manufacturing Process for Diagnosis Rule Induction », Journal of 
Intelligent Manufacturing 15, no 3 (1 juin 2004): 395‑408, 
https://doi.org/10.1023/B:JIMS.0000026576.00445.d8. 
33 Erick Rocha et al., « A fuzzy type-2 fault detection methodology to minimize false alarm rate in induction 
motor monitoring applications », Applied Soft Computing, 1 mai 2020, 106373, 
https://doi.org/10.1016/j.asoc.2020.106373. 
34 Azzam Sleit, Maha Saadeh, et Wesam Almobaideen, « A Two-Phase Fuzzy System for Edge 
Detection », 2016, https://www.researchgate.net/publication/311068958_A_Two-
Phase_Fuzzy_System_for_Edge_Detection. 
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 Artificial neural networks: for the characterisation of non-linear behaviour in industrial 
processes; these models are non-linear multivariate mathematical models that use 
iterative procedures with the aim of minimising a certain error function and thus 
classifying the observations. Their main disadvantage is their "black box" nature, i.e. the 
difficulty in interpreting the results and the limitation in incorporating the physical sense 
of the element or process. This technique has been used many times for fault 

classification and diagnosis. For example, this research35 uses neural networks for fault 

detection in industrial rotating equipment. This other36 presents a new methodology 

based on neural networks for failure mode detection applied to rotating machinery. In 
unbalanced data, the methodology presented presents substantial improvements over 
traditional techniques applied in this field. This work37, presents a robust convolutional 
neural network capable of performing real-time diagnosis for gas turbines. In turn, this 

other38 has diagnosed bearing failures using convolutional neural networks. 

 
Figure 11. Structure of neural network39 

 

35 Xianzhen Xu et al., « Application of neural network algorithm in fault diagnosis of mechanical 
intelligence », Mechanical Systems and Signal Processing 141 (1 juillet 2020): 106625, 
https://doi.org/10.1016/j.ymssp.2020.106625. 
36 Quan Zhou et al., « A Novel Method Based on Nonlinear Auto-Regression Neural Network and 
Convolutional Neural Network for Imbalanced Fault Diagnosis of Rotating Machinery », Measurement 161 
(1 septembre 2020): 107880, https://doi.org/10.1016/j.measurement.2020.107880. 
37 Dengji Zhou et al., « Fault Diagnosis of Gas Turbine Based on Partly Interpretable Convolutional Neural 
Networks », Energy 200 (1 juin 2020): 117467, https://doi.org/10.1016/j.energy.2020.117467. 
38 Zhuyun Chen et al., « A Deep Learning Method for Bearing Fault Diagnosis Based on Cyclic Spectral 
Coherence and Convolutional Neural Networks », Mechanical Systems and Signal Processing 140 (1 juin 
2020): 106683, https://doi.org/10.1016/j.ymssp.2020.106683. 
39 Amin Hedayati, Moein Hedayati, et Morteza Esfandyari, « Stock Market Index Prediction Using Artificial 
Neural Network », SSRN Scholarly Paper (Rochester, NY, 17 juillet 2017), 
https://papers.ssrn.com/abstract=3004032. 
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 Support Vector Machine or SVM: these are classification models that try to solve the 
difficulties that complex data samples can pose, where relationships need not be linear. 
In other words, the aim is to classify observations into various groups or classes, but 
these are not separable via a hyperplane in the dimensional space defined by the data. 
The goal is to find the hyperplane that separates the classes and that is most distant 
from the observations of the classes simultaneously. SVMs have been widely used in 

the field of failure mode classification. This study40 presents a comparison of several 

techniques for failure diagnosis in a centrifugal pump including the SVM model. The 

results show a higher capability of SVM using a smaller number of features. This work41 
proposes a new methodology based on SVM for the detection and identification of 
multiple bearing failure modes. The results obtain high accuracy for different operating 
conditions. 

 
Figure 12. Illustrative image of the operation of SVM for linear cases42 

 Clustering techniques: these clustering techniques are unsupervised techniques that 
group data according to their similarity. In the field of diagnosis, clustering techniques 
make it possible to detect the state of health of a system at a given moment based on a 
history of data that has been previously trained. The classification of a piece of data is 
established by its belonging to a specific grouping. These techniques are frequently used 

today in the field of maintenance, especially for the diagnostic part. This study43 presents 

 

40 Maamar Ali Saud ALTobi et al., « Fault Diagnosis of a Centrifugal Pump Using MLP-GABP and SVM 
with CWT », Engineering Science and Technology, an International Journal 22, no 3 (1 juin 2019): 854‑61, 
https://doi.org/10.1016/j.jestch.2019.01.005. 
41 Xiaoan Yan et Minping Jia, « A Novel Optimized SVM Classification Algorithm with Multi-Domain 
Feature and Its Application to Fault Diagnosis of Rolling Bearing », Neurocomputing 313 (3 novembre 
2018): 47‑64, https://doi.org/10.1016/j.neucom.2018.05.002. 
42 Haifeng Wang et al., « A Support Vector Machine-Based Ensemble Algorithm for Breast Cancer 
Diagnosis », European Journal of Operational Research 267, no 2 (1 juin 2018): 687‑99, 
https://doi.org/10.1016/j.ejor.2017.12.001. 
43 Xiang Li, Xu Li, et Hui Ma, « Deep Representation Clustering-Based Fault Diagnosis Method with 
Unsupervised Data Applied to Rotating Machinery », Mechanical Systems and Signal Processing 143 (1 
septembre 2020): 106825, https://doi.org/10.1016/j.ymssp.2020.106825. 
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a fault diagnosis for real data associated with rotating machinery. The results obtained 

are really good in the exploration of these faults for unsupervised data. This work44 
performs an approach for on-line fault diagnosis based on clustering and fuzzy logic 
techniques. This approach incorporates a machine learning mechanism that allows 
excellent results to be obtained. 

 
Figure 13. Clustering of 2 Dimesional signals45 

 Hidden Markov Model (HMM): is a concept developed within the theory of probability 
and statistics that establishes a strong dependence between an event and a previous 
state. This type of technique is used for irreversible repetitive systems of long duration, 
where the evolution in the states of the chain allows establishing a distance to the event 

under study. This work46 performs bearing fault detection and demonstrates its 

superiority over conventional methods. This work47 also generates a fault detection 

model applying Markov models based on the data acquired from the fluids of the 
machinery associated with the process. 

 ARIMA: these are statistical models that use variations and regressions of data to detect 
patterns and predict future values over time. It is a dynamic time series model, i.e. future 
estimates are explained by previously collected data. For prognostics, it allows the 
prediction of future values based on the latest available data in an adaptive way, which 
gives a great potential in those systems with a small margin of error such as the 
prediction of tool wear in fast mechanical processes. This technique has become very 

 

44 Adrián Rodríguez-Ramos, Antônio José da Silva Neto, et Orestes Llanes-Santiago, « An Approach to 
Fault Diagnosis with Online Detection of Novel Faults Using Fuzzy Clustering Tools », Expert Systems 
with Applications 113 (15 décembre 2018): 200‑212, https://doi.org/10.1016/j.eswa.2018.06.055. 
45 Amit Saxena et al., « A Review of Clustering Techniques and Developments », Neurocomputing 267 
(6 décembre 2017): 664‑81, https://doi.org/10.1016/j.neucom.2017.06.053. 
46 Zefang Li et al., « Data-Driven Bearing Fault Identification Using Improved Hidden Markov Model and 
Self-Organizing Map », Computers & Industrial Engineering 116 (1 février 2018): 37‑46, 
https://doi.org/10.1016/j.cie.2017.12.002. 
47 Pasquale Arpaia et al., « Fault Detection on Fluid Machinery using Hidden Markov Models », 
Measurement 151 (1 octobre 2019): 107126, https://doi.org/10.1016/j.measurement.2019.107126. 
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important in time series prediction. This work48 performs the estimation of remaining tool 

life for the turning of a part in the automotive sector. 
 Gaussian Regressive Processes (GPR): is a collection of random variables that satisfy 

that any physical subset of the collection has a Gaussian distribution. It can be likened 
to an infinite-dimensional multivariate Gaussian distribution. Within this distribution, prior 
knowledge about the function space can be incorporated through the selection of the 

mean and covariance functions. This study49 generates a surface roughness prediction 

model for compacted graphite cast iron using GPR. The results show that the shear rate 

significantly affects the surface roughness. This study50 presents an application of the 

GPR method for the prediction of the RUL (remaining useful life) of low-speed bearings 
based on acoustic emission signals. The results show very low errors in low-speed 
bearings. 

 Survival methods: these techniques are part of studies in which the objective is to study 
the times until an event of interest occurs. Once this event is fixed, the times until the 
event occurs are observed, which in maintenance is known as time to failure (TTF), and 
the study focuses on modelling these times. This type of analysis aims at modelling the 

survival function and the risk function of the event. This study51 presents a predictive 

maintenance model using the Cox model. The data used has been real data in which the 

proposed method has improved the existing one. This stydy52 applies the survival model 

for the estimation of the RUL in a turning system. 
 Decision trees and extensions, for the inference of diagnostic rules and detection of 

malfunctioning symptoms in industrial assets; this method consists of using efficient and 
easily interpretable classification and regression algorithms that divide the problem 
search space into tree models. It is a classifier whose interpretability is reduced in tree 
rules and has high computational efficiency. This method allows mixing continuous and 
categorical data, and there are multiple extensions with state-of-the-art performance 
such as Random Forest, AdaBoost, etc. 

 Novelty detection: this type of Machine Learning algorithms from the world of robotics 
have become widespread in industrial realities where training with anomalous cases is 
not an option. This type of algorithm is an evolution of anomaly detection with the 
difference of being able to label these anomalies as they happen, in order to learn as 

 

48 Alberto Jimenez-Cortadi et al., « Predictive Maintenance on the Machining Process and Machine 
Tool », Applied Sciences 10, no 1 (janvier 2020): 224, https://doi.org/10.3390/app10010224. 
49 Juan Lu et al., « Effect of Machining Parameters on Surface Roughness for Compacted Graphite Cast 
Iron by Analyzing Covariance Function of Gaussian Process Regression », Measurement 157 (1 juin 
2020): 107578, https://doi.org/10.1016/j.measurement.2020.107578. 
50 S. A. Aye et P. S. Heyns, « An Integrated Gaussian Process Regression for Prediction of Remaining 
Useful Life of Slow Speed Bearings Based on Acoustic Emission », Mechanical Systems and Signal 
Processing 84 (1 février 2017): 485‑98, https://doi.org/10.1016/j.ymssp.2016.07.039. 
51 Chong Chen et al., « Predictive Maintenance Using Cox Proportional Hazard Deep Learning », 
Advanced Engineering Informatics 44 (1 avril 2020): 101054, https://doi.org/10.1016/j.aei.2020.101054. 
52 Lucas Equeter et al., Estimate of Cutting Tool Lifetime through Cox Proportional Hazards Model, 2016, 
https://doi.org/10.13140/RG.2.2.15305.13927. 
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they go along. Novelty Detection has been largely driven by applications in nuclear 
energy and aerospace technologies. In addition, such algorithms have the ability to learn 
from data streams, so that they can process them as they arrive, in some cases, and 
depending on the underlying algorithm, they can work in real time. Another fundamental 
characteristic is its capacity to detect and measure the degradation of the system being 
measured, which is very interesting for different types of industrial applications where 
the remaining useful life of the different components is to be measured.  
 

With regard to process optimisation algorithms, genetic algorithms, inspired by the theory of 
evolution, make it possible to find optimal solutions to a problem. These algorithms try to 
optimise an objective function by recombining and mutating the existing population of solutions.  
The use of evolutionary methods in optimisation problems has introduced important 
improvements with respect to traditional methods in various domains and applications: 
mathematics, industry, applied engineering, etc. It allows ad-hoc solutions to be defined, 

establishing complex relationships between variables, constraints and objectives53. 

Industrially, Artificial Intelligence appears especially in Asian manufacturers. The Japanese 
machine tool manufacturer Okuma has integrated a set of applications called Intelligent 
Technologies into the numerical controls of its machines, including the "Machining Navi" 
application. Among other things, this application recommends optimal spindle speeds to avoid 
vibrations during machining and increase productivity. The system leverages Okuma's 

advanced OSP control and sensors to monitor vibrations54. 

Siemens' "Analyze MyMachine/Condition" application55 uses AI-based statistical models to 

analyse and ensure the quality and stability of the workpiece process, and improve productivity 
while saving resources, by analysing machine data acquired at high frequency 

 

53 Zuntong Wang, Zhanqiang Liu, et Xing Ai, « Case Representation and Similarity in High-Speed 
Machining », International Journal of Machine Tools and Manufacture 43, no 13 (1 octobre 2003): 
1347‑53, https://doi.org/10.1016/S0890-6955(03)00152-4. 
54 « Intelligent Technology // OKUMA Europe GmbH », Okuma Europe GmbH, s. d., 
https://www.okuma.eu/es/tecnologia/corte/intelligent-technology/. 
55 « Analyze MyMachine /Condition », s. d., 
https://documentation.mindsphere.io/resources/html/Analyze-MyMachine-condition-opman/en-
US/114549568779.html. 
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Figure 14. “Analyze MyMachine/Condition" application of Siemens56 

In turn, DMG MORI focuses on the optimisation and acceleration of procurement and 
manufacturing processes based on Artificial Intelligence: from quotation and order entry, through 
job preparation and CAM programming, to machine planning. The core of the software solution 
is Artificial Intelligence, which analyses the geometry of each component in a matter of seconds 
on the basis of machine learning algorithms and human knowledge. The result is a concrete 
work plan and the manufacturing price of the component. With each component, the AI 'learns', 
optimising its algorithms independently and continuously. One example is the "Machine 
Vibration Control" application, which aims to assist the user in the operational phase of the 
machine by means of tools that range from monitoring the parameters of the machining 
processes to the automatic and intelligent correction of the different geometric errors and 

deviations detected from the programmed trajectories57. 

Makino, for its part, has developed the "MHmax" software based on Machine Learning 
techniques for predictive machine status monitoring which, by means of automatic learning of 
the sensors integrated in the machine, predicts problems before they occur, taking measures to 

avoid unplanned downtime58. 

 

56 « Analyze MyMachine /Condition ». 
57 « CELOS Machine & Manufacturing », s. d., https://es.dmgmori.com/productos/digitization/celos. 
58 « Makino Health Maximizer (MHmax) Tutorial | Makino », s. d., https://www.makino.com/en-us/digital-
makino/mhmax/mhmax-tutorial. 
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Figure 15. “MHmax” Software of Makino to determine the spindle status59 

Finally, Mazak has incorporated the term "AI powered" into its machines. Two Machine Learning 
applications are worth highlighting, a CAM assistant for turning that is able to learn from operator 
corrections, and an application that records vibration levels in operation in order to create a 
pattern of positions and cutting conditions where machine vibrations are generated in order to 

assist the operator in controlling cutting conditions60. 

 
Figure 16. “Smooth AI Spindle” system of Mazak61 

In the EDM environment, a review of the most recent scientific literature shows the increasing 
trend towards intelligent manufacturing systems, with autonomy to detect/collect data, control 
the erosion process, diagnose faults and "learn" to improve their performance using AI 
techniques.  An example in the field of wire EDM is the application of AI techniques, such as 
unsupervised learning algorithms, to process machine signals and detect deviations in part 

 

59 « Makino Health Maximizer (MHmax) Tutorial | Makino ». 
60 « Smooth Ai », s. d., https://www.mazakeu.com/smooth-ai/. 
61 « Smooth Ai ». 
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accuracy62 63. Another example is the work done by Guisti et al. This work64 based on a 

convolutional neural network (CNN) that, given as input a small image of the surface (thanks to 
a machine vision system) returns the roughness value. In the specific case of "Fasthole" 
penetration machines, many of the works focus on the detection of the "break out" or exit of the 

hole based on the machine data and the detected patterns65. Finally, one of the Keynotes of the 

most prestigious conference on EDM, ISEM XX (Conference on Electro Physical and Chemical 
Machining), held in early 2021, mentions how the use of enabling technologies such as the 
Internet, 5G, IoT, Edge Computing or AI are overcoming the frontier of technical limitations for 

the development of modern smart manufacturing systems66. 

GF Machining Solutions is one of the leading manufacturers of EDM machines in the use of AI 
for process control and improvement. During Matlab Expo 2019 it presented a Keynote 
showcasing some applications where AI algorithms could be useful. For example, the 
application of neural networks to detect anomalies in the process in advance and correct them 
(Zero Defect Manufacturing) or the optimisation of the Fasthole process for turbine blades. This 
process is notable for the large number of variables involved, and GF proposes the application 
of stochastic optimisation algorithms to find the optimum of the process. 

 

62 J. Wang et al., « Artificial Intelligence for Advanced Non-Conventional Machining Processes », 
Procedia Manufacturing, 8th Manufacturing Engineering Society International Conference, MESIC 2019, 
19-21 June 2019, Madrid, Spain, 41 (1 janvier 2019): 453‑59, 
https://doi.org/10.1016/j.promfg.2019.09.032. 
63 Jun Wang et al., « Unsupervised Machine Learning for Advanced Tolerance Monitoring of Wire 
Electrical Discharge Machining of Disc Turbine Fir-Tree Slots », Sensors 18 (8 octobre 2018): 3359, 
https://doi.org/10.3390/s18103359. 
64 Alessandro Giusti et al., « Image-Based Measurement of Material Roughness Using Machine Learning 
Techniques », Procedia CIRP, 20th CIRP CONFERENCE ON ELECTRO PHYSICAL AND CHEMICAL 
MACHINING, 95 (1 janvier 2020): 377‑82, https://doi.org/10.1016/j.procir.2020.02.292. 
65 Wei Liang et al., « Feasibility Research on Break-out Detection Using Audio Signal in Drilling Film 
Cooling Holes by EDM », Procedia CIRP, 20th CIRP CONFERENCE ON ELECTRO PHYSICAL AND 
CHEMICAL MACHINING, 95 (1 janvier 2020): 566‑71, https://doi.org/10.1016/j.procir.2020.02.271. 
66 Wansheng Zhao et al., « Reconstructing CNC Platform for EDM Machines towards Smart 
Manufacturing », Procedia CIRP, 20th CIRP CONFERENCE ON ELECTRO PHYSICAL AND CHEMICAL 
MACHINING, 95 (1 janvier 2020): 161‑77, https://doi.org/10.1016/j.procir.2020.03.134. 
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Figure 17. Example of Fasthole EDM process parameter optimisation using ML techniques. 

GF.MITSUBISHI Electric has applied its wireless communication system for automatic 
optimisation thanks to AI called Maisart (Mitsubishi Electric's AI creates the State-of-the-art in 
Technology) in its SV12P die sinking EDM machine. This technology monitors the process and 
thanks to AI adapts it to obtain better results such as an ultra-fine finish, faster machining speed 
or less wear on the electrodes when working with PCD and CBN type materials. In addition, they 

promise to predict erosion times more accurately, traditionally a difficult task67. 

With respect to Machine Vision, it can be defined as a field of Artificial Intelligence that, by using 
the appropriate techniques, allows obtaining, processing and analysing any type of special 
information obtained through digital images. Artificial Vision is made up of a set of processes 
aimed at carrying out image analysis. These processes are: image capture, information storage, 
processing and interpretation of the results. 

Machine vision excels at quantitative measurement of a structured scene due to its speed, 
accuracy and repeatability. For example, on a production line, a machine vision system can 
inspect hundreds, or even thousands, of objects per minute. A Machine Vision system built 
around the right camera resolution and optics can easily inspect details of objects too small to 
be seen by the human eye. Some of the applications of Machine Vision in industry are as follows: 

Industrially, in recent years there has been a growing number of companies that have installed 
automated systems in their workshops using Machine Vision.  For example, one of the problems 
of DMG MORI's customers who use automation systems is stopping the machine due to faults 
caused by chips generated during machining. The "AI Chip Removal" function developed by 
DMG MORI analyses the state of chip accumulation using Machine Vision and Machine 

 

67 « Electroerosionadora Mitsubishi SV12P con tecnología de inteligencia artificial », 31 décembre 2020, 
https://www.mms-mexico.com/productos/electroerosionadora-mitsubishi-sv12p-con-tecnologia-de-
inteligencia-artificial. 
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Learning techniques and removes the chip automatically to reduce problems and help maximise 

the production output of automation systems68. 

 
Figure 18. “AI Chip Removal” application from DMG MORI for the removal of chips by Artificial Vision69 

Siemens offers a wide range of Edge applications for a variety of use cases. Its "Analyze 
MyWorkpiece/Vision" application analyses the quality of the workpiece using a camera image 
and AI-based software to increase machine tool productivity. The application is able to 
determine the correct position of the workpiece in the machining area and can also monitor tool 

wear throughout its life70. 

 
Figure 19. “Analyze MyWorkpiece/Monitor” for the analysis by Artificial Vision71 

 

68 « “AI Chip Removal” Developed for Automatic Removal of Chips Generated during Machining | 
News/topics | DMG MORI », s. d., https://www.dmgmori.co.jp/en/trend/detail/id=5484. 
69 « “AI Chip Removal” Developed for Automatic Removal of Chips Generated during Machining | 
News/topics | DMG MORI ». 
70 « Analyse MyWorkpiece /Toolpath », fw_Routing, siemens.com Global Website, s. d., 
https://www.siemens.com/global/en/markets/machinebuilding/machine-tools/cnc4you/fokus-
digitalisierung/analyse-myworkpiece-tp.html. 
71 Ibid 
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Regarding the maintenance of machine components, researchers at the Karlsruhe Institute of 
Technology (KIT) have developed a system for fully automated monitoring of ball screws in 
machine tools. A camera integrated directly into the disc nut generates images that artificial 
intelligence continuously monitors for signs of wear, which helps to reduce machine downtime 

through the use of machine vision72. 

 
Figure 20. Artificial Vision for intelligent monitoring of the ball screw (KIT)73 

The Makino i-Assist robot features a host of advanced functions for manufacturing parts using 
machine vision. For example, it finds its own way to the machine it needs to feed, avoiding any 
obstacles, picks up parts even if they are not in the correct position, and loads tools into a pre-
setting machine. 

 

Figure 21. Robot i-Assist by Artificial Vision of Makinol 

 

72 Tobias Schlagenhauf et al., « Integration of machine vision in ball screw drives – Integrated system for 
condition monitoring of ball screw drives », wt Werkstattstechnik online 109 (1 août 2019): 605‑10, 
https://doi.org/10.37544/1436-4980-2019-07-08-95. 
73 Ibid 
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Multitask and hybrid machines, flexible systems 

The industrial capacity of the Basque Country is undoubtedly one of the most important in Spain, 
and it is also one of the most advanced regions in Europe. Within Basque industry, it is worth 
highlighting the machine tool sector, which is widely consolidated and is considered strategic for 
the Basque Country, not only because of the volume it represents, but also because of the pull 
effect it generates on the entire Basque economy. The Basque machine tool sector is 
characterised by its high competitiveness, continuous innovation and high rate of 
internationalisation, with more than 90% of its sales being exported to all corners of the world. 

One fact that reflects the importance of the machine tool sector in the Basque Country is that, 
with Spain being the third largest exporter of machine tools in Europe and the ninth largest in 
the world, 90% of its machine tool companies are located in the Basque Country. It is therefore 
clear that the Basque Country is one of the most important machine tool regions in the world 
and where most technology and added value is being generated. 

Due to the great depth and importance of the machine tool sector in the Basque Country, there 
are numerous entities and administrations that continually propose common actions related to 
new activities for the sector 

More efficient and flexible processes and their effect in terms of productivity gains.  

 Predictive Maintenance of Machinery 

The state of the machine condition will be diagnosed continuously and unattended at the 
customer's site without interfering with production. Normality patterns and supervised 
learning of the machine's condition will allow the parameters of the machine and its systems 
to be adapted to the state of the machine and its cabin at any given moment. Continuous 
modification of the tuning parameters will ensure optimal operating conditions and prolong 
the service life of the machines. 

 Second Best 

The learning of the process executed during the manufacturing of the first part will allow the 
learning and formulation of prescriptions to improve the manufacturing of the second part 
according to objective functions selected by the machine operator: reduce times to increase 
productivity, reduce vibrations and deflections in the tool to improve precision and surface 
quality, eliminate impacts on the tool and keep the load on the cutting edge constant, reduce 
the flow of the input material in areas of overgrowth or similar. 

 Continuous Dynamic Adjustment of the Machines 

As opposed to an adjustment for a fixed weight and inertia that impairs the dynamics in case 
of reduced part weight and inertia by finding a compromise solution for any weight and 
inertia, the continuous adjustment of the machine dynamics will increase the process speed 
and substantially reduce process times. Parts can undergo drastic weight changes through 
processing: weight reduction in start-up processes of up to 90% and weight increase in 
additive processes (up to 100%). 
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Automation of processes 

As with machine condition monitoring and optimisation, including the condition of major 
components and geometric accuracy, access to machine control and integrated sensor data 
opens up a world of possibilities related to the condition of the manufacturing processes carried 
out on the machine. Access to data enables the development of advanced functions aimed at 
optimising process quality and productivity. 

Recently, the most advanced machine manufacturers have been incorporating functionalities 
for monitoring the condition of the processes carried out on their machines and functionalities 
for self-adjustment of process control parameters, giving rise to adaptive processes that seek to 
optimise quality and productivity, as well as facilitating the work of machine operators.  

Some of the advanced solutions for process condition monitoring, representative of the state of 
the art in the manufacturing machine sector, are presented below:    

As standard the machines are delivered with the drive parameters set to the highest foreseeable 

part weight. The Load Adaptive Control (LAC) functions from Heidenhain74, Intelligent Load 

Control (ILC) from Siemens75 and Servonavi from Okuma76 adapt the settings of the machine 
axis control according to the weight of the workpiece to be machined. This allows the machine 
dynamics to be optimised for each workpiece, resulting in shorter process times and greater 
precision. The adjustment is made possible by the automated calculation of the workpiece 
weight by means of control parameters recorded in a specific axis movement. 

 

Figure 22. Intelligent Load control of Siemens (left)77 and Load Adaptive control of Heidenhain (right)78 

During the high-performance machining process, the high forces generated by the tool can 
cause vibrations in the machine structure (chatter). In extreme situations, this can lead to 
damage to the tool, workpiece or machine. DMG MORI, Heidenhain, Mazak, Okuma and 
Soraluce offer intelligent control solutions to reduce these vibrations.  

 

74 « DynamicPrecision.pdf », Heidenhain, 2013, 
https://www.heidenhain.us/lp/controls/DynamicPrecision.pdf. 
75 « Siemens Machine Tool Days - October 14th, 2020 », siemens.com Global Website, 2020, 
https://new.siemens.com/global/en/company/fairs-events/events/machine-tool-days.html. 
76 Okuma’s Intelligent Technology - SERVONAVI, 2016, https://www.youtube.com/watch?v=k4bHmpFui-
Y. 
77 « Siemens Machine Tool Days - October 14th, 2020 ». 
78 « DynamicPrecision.pdf ». 
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DMG MORI's Machine Vibration Control (MVC) function79 registers vibrations during machining 

by means of an accelerometer integrated in the electrospindle and detects whether chatter is 
occurring, in which case the system algorithm proposes new cutting conditions that avoid 
vibrations. More productive cutting conditions are obtained with less vibration, it provides 
automatic suggestions of suitable process parameters and allows the vibration status to be 
monitored by means of different indicators that serve as guidance for the machine operators. 

 
Figure 23. Machine Vibration Control (MVC) of DMG MORI80 

Heidenhain has developed the Active Chatter Control (ACC) function81, which calculates a 

compensation signal based on the number of inserts in the tool and the spindle speed, thus 
reducing vibrations.  This makes it possible to achieve higher feed rates, feed rates and process 
times, which helps to increase productivity and reduce costs. 

 
Figure 24. Active Chatter Control (ACC) of Heidenhain82 

 

79 « DMG MORI France - Machines-outils CNC pour toutes les applications de l’enlèvement de matière ». 
80 « DMG MORI France - Machines-outils CNC pour toutes les applications de l’enlèvement de matière ». 
81 DR JOHANNES HEIDENHAIN GmbH, « Dynamic Efficiency », s. d., 
https://www.heidenhain.us/lp/controls/DynamicEfficiency.pdf. 
82 GmbH. 
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Mazak's chatter control solution, Smooth AI Spindle83, detects when chatter is occurring during 
machining, and using AI techniques searches for optimal machining conditions to reduce or 
eliminate chatter to improve part quality and enable increased productivity. 

 

Figure 25. Smooth AI Spindle of Mazak84 

Okuma's Machining Navi system85 uses accelerometers to monitor the vibrations of the electro 

spindle during the cutting process. If necessary, the intelligent control application recommends 
or automatically adapts the spindle speed, improving machining surface quality and process 
times. 

 

Figure 26. Machining Navi of Okuma86 

DMG MORI presents Machine Protection Control (MPC)87, a solution that prevents tool 

breakage and protects the machine against damage caused by overloads and collisions during 
machining. With an accelerometer integrated in the machine head, the vibrations produced 
during machining are recorded and compared live with the reference values for the respective 
process, values that were obtained in a teaching or learning cycle. The solution monitors the 
vibrations continuously and generates alarms and machine stops when set thresholds are 
exceeded. 

 

83 Smooth AI Spindle : Automatic compensation by AI, 2018, 
https://www.youtube.com/watch?v=K0pjVRsS2hI. 
84 Smooth AI Spindle. 
85 Okuma’s Intelligent Technology - Machining Navi, 2016, 
https://www.youtube.com/watch?v=wXfsKomM_tE. 
86 Okuma’s Intelligent Technology - Machining Navi. 
87 « DMG MORI France - Machines-outils CNC pour toutes les applications de l’enlèvement de matière ». 
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Figure 27. Machine Protection Control (MPC) of DMG MORI88 

DMG MORI also offers a complementary solution for the prevention of damage due to tool 
breakage or overloading, which does not require external sensors as it is based on the 

machine's internal control parameters. Easy Tool Monitoring 2.089 consists of an advanced 

evaluation algorithm with self-learning capability of load limits and efficient control after the first 
workpiece. 

 

Figure 28. Easy Tool Monitoring 2.0 of DMG MORI90 

Another solution from the same manufacturer, DMG MORI, is the Tool Control Center91 for force 

and bending detection of the cutting head, with sensors integrated in the nose of the electro 
spindle and wireless data transfer by induction from the rotor to the stator. It allows detection of 
chips in the bearing and tool taper, monitoring of the tensile force, in-process control of the 
cutting tool cutting edge by symmetrical tracking of the bending moment per cutting edge and 
monitoring of the bending moment by history graph. It provides tool and workpiece protection 
and optimises tool life. 

 

88 « DMG MORI France - Machines-outils CNC pour toutes les applications de l’enlèvement de matière ». 
89 « DMG MORI France - Machines-outils CNC pour toutes les applications de l’enlèvement de matière ». 
90 « DMG MORI France - Machines-outils CNC pour toutes les applications de l’enlèvement de matière ». 
91 « DMG MORI France - Machines-outils CNC pour toutes les applications de l’enlèvement de matière ». 
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Figure 29. Tool Control Center of DMG MORI92 

Along the same lines of cutting tool protection, Okuma incorporates Dynamic Tool Load Control 
in its machines, with the aim of reducing cutting tool wear, achieving stable machining for 

difficult-to-cut materials. Okuma's Dynamic Tool Load Control93 compensates for tool deflection 

by varying the feed rate. Deflection is measured, ensuring a constant load during machining. It 
increases tool life, improves the quality of machined parts and reduces downtime for tool 
changes. 

To protect the machine against excessive power values and optimise productivity, Heidenhain 

offers the Adpative Feed Control function94. The feed rate in machining operations is usually set 

depending on the material to be machined, the tool and the depth of cut. If the cutting conditions 
change during the process, e.g. due to fluctuations in the depth of cut, tool wear or variations in 
the hardness of the material, the feed rate is usually not changed, so that the process is not 
optimised because the values are usually set for the worst-case scenario. The AFC function 
adapts and optimises the machining feed rate in real time, depending on the spindle power. The 
function continuously compares the momentary power of the process with the reference values 
and varies the feed rate to keep the power at the reference values. In this way, it increases the 
productivity of the process while protecting the machine from exceeding excessive power 
values. 

In order to avoid collisions between tool and workpiece during machining, Okuma's Collision 

Avoidance System (CAS)95 installed in the machine control monitors the cutting process through 

a virtual application (with 3D models of the machines, workpieces and tools) that measures the 
exact shape of the material milliseconds before the machining operation. Potential collisions are 
detected in time for the control to stop the machine before they occur. It protects the machine, 

 

92 « DMG MORI France - Machines-outils CNC pour toutes les applications de l’enlèvement de matière ». 
93 Okuma’s Intelligent Technology - SERVONAVI. 
94 GmbH, « Dynamic Efficiency ». 
95 Okuma’s Intelligent Technology - Collision Avoidance System, 2015, 
https://www.youtube.com/watch?v=ViONSkhC3SU. 
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workpiece and tools against collisions and greatly reduces machining setup time as it can also 
be used in the manual mode of the control. 

 

Figure 30. Collision Avoidance System (CAS) of Okuma96 

In turn, Siemens proposes a solution that integrates a vision camera that monitors the machining 
process and protects the machine and workpiece from possible collisions through artificial 

intelligence97. 

 
Figure 31. Solution to avoid collisions with Artificial Vision of Siemens98 

Another example of solutions based on machine vision is DMG MORI's Automatic Hole 

Detection (ADH)99, for recognition of reference holes in the part (features), comparison with the 

virtual part and automated translation of the part program on the machine. It reduces the work 
of positioning and adjusting the part prior to machining, eliminating possible errors and reducing 
process times. 

 

 

96 Okuma’s Intelligent Technology - Collision Avoidance System. 
97 « Siemens Machine Tool Days - October 14th, 2020 ». 
98 Ibid 
99 « DMG MORI France - Machines-outils CNC pour toutes les applications de l’enlèvement de matière ». 
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Figure 32. Automatic Hole Detection (ADH) of DMG MORI100 

Taking a particular look at EDM, this process requires a great deal of variable control to achieve 
a stable cut, which has forced machine manufacturers to develop digital generators capable of 
controlling and acting on individual discharges. The control of discharges influences the 
achievement of priority objectives such as increasing removal rates or improving the surface 
integrity of the parts, but also opens an opportunity to adapt the process to specific part 
characteristics or working conditions, such as detecting part cutting thickness, avoiding wire 
breakage, predicting wear, estimating component life, etc. If this is combined with the 
information acquired from the CNC itself and the use of new sensors on the machine, its 
environment or the part itself, it is possible to acquire enough information from the process to 
apply techniques with predictive and decision-making capabilities.  

Thanks to this, manufacturers of EDM machines have begun to integrate intelligent systems 
into the machines to facilitate the user's work. GF Machining Solutions has integrated the 

optional Spark Track system into its wire EDM machines101. Although the principle of this system 

has been known for more than 30 years, it could not be implemented until now due to the 
absence of the necessary electronics for signal processing. GF integrates state-of-the-art 
sensors in its machines that detect in real time where each discharge occurs along the wire and 
its intensity, and then process all this data and generate application modules to better control 
the cutting process. The processing is done using FPGAs (Field Programmable Gate Arrays), 
programmable devices to extract from the electrical signals the most significant characteristics 
for the process in real time.  

The first module presented is the Intelligent Spark Protection System (ISPS), which prevents 
wire breakage thanks to constant monitoring of discharges in variable-section parts and 
adaptive control of process parameters. This results in an increase in performance. In addition 
to this module, according to GF, the Spark Track system opens the way for further innovation 
in wire EDM and the implementation of research carried out more than 30 years ago thanks to 

 

100 « DMG MORI France - Machines-outils CNC pour toutes les applications de l’enlèvement de matière ». 
101 « ISPS - Intelligent Spark Protection System », GF Machining Solutions Sales Switzerland SA - Suisse, 
s. d., https://www.gfms.com/fr-ch/machines/edm/wire-cutting/intelligent-spark-protection-system.html. 
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the capabilities of new sensors, the processing speed of signal acquisition and processing 

systems and the application of AI algorithms102. 

 

Figure 33. SparkTrack system of GF Machining Solutions103 

Other manufacturers, such as Makino, have recently presented a paper showing the 
development of a system for online analysis of machine signals in wire EDM using FPGAs for 

process performance control104. They also mention that the developed control system can be 

implemented in other applications such as wire breakage control. 

 

102 M. Boccadoro, R. D’Amario, et M. Baumeler, « Towards a Better Controlled EDM: Industrial 
Applications of a Discharge Location Sensor in an Industrial Wire Electrical Discharge Machine. », 
Procedia CIRP, 20th CIRP CONFERENCE ON ELECTRO PHYSICAL AND CHEMICAL MACHINING, 
95 (1 janvier 2020): 600‑604, https://doi.org/10.1016/j.procir.2020.02.266. 
103 Boccadoro, D’Amario, et Baumeler. 
104 Ugur Küpper, Tim Herrig, et D. Welling, « Evaluation of the Process Performance in Wire EDM Based 
on an Online Process Monitoring System », Procedia CIRP 95 (2 février 2021): 360‑65, 
https://doi.org/10.1016/j.procir.2020.02.325. 
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Figure 34. Process data analysis system of Makino105 

In the field of additive manufacturing, in order to obtain a reliable and efficient industrial input 
process, it is of vital importance to monitor the process by acquiring internal signals.  

An example of this is the DMG MORI AM-Evaluator106 solution for data logging of the additive 

manufacturing process. It provides a detailed analysis of relevant process data, in 3D model 
format, as well as in time graphs. It allows comparisons of different processes to be made for 
user support, enabling processes to be optimised and quality to be improved. Data logging also 
provides traceability of the manufacturing of each part. 

 

Figure 35. AM-Evaluator of DMG MORI107 

Additive Manufacturing 

In Additive Manufacturing it is also necessary to include closed loop control systems within the 
process that act on the main parameters (power, powder feed and flow/wire feed, etc.) adapting 
automatically according to the data recorded during the process. Recent studies in additive 

 

105 Küpper, Herrig, et Welling. 
106 « DMG MORI France - Machines-outils CNC pour toutes les applications de l’enlèvement de matière ». 
107 « DMG MORI France - Machines-outils CNC pour toutes les applications de l’enlèvement de matière ». 
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technologies have incorporated process monitoring and control systems in machines dedicated 
to additive manufacturing and have developed control algorithms to diagnose the process during 
input. This is essential to ensure the quality of the parts and to prevent errors such as pores, 
non-fusion zones or deformations. The inclusion of these systems implies integrating more 
systems into the process that interact with the rest of the machine and with the casting paths. 

More specifically, regarding Laser Cladding technology, the most frequent monitoring 
parameters in the state of the art are the geometry of the molten bath, defects in the structure 

(porosities and cracks), height of the deposited material or simply temperature108. Most efforts 

have focused on monitoring temperature, molten bath size and deposited layer height in addition 
to the subsequent dimensional control of the deposited geometry. 

The following is a description of the work focused on monitoring and controlling the main 
process parameters in additive manufacturing by Laser Cladding, which are the molten bath, 
the layer height, powder flow and the final delivered geometry: 

 Melting bath: Temperature is a relevant parameter that affects the metallurgical 

structure109 and the dimensional accuracy of the input material. As material is added, 

the substrate heats up, so if you continue to add material in the same area, the process 
will reach higher temperatures. This will increase the molten pool and dilution causing 
dimensional differences, differences in structure and mechanical characteristics in the 
different layers of input material. It will also increase the fluidity of the input material and 
may cause loss of shape and, if the temperature reached is too high, evaporation of 
material as in a laser cutting process.  
The control of the temperature and size of the molten bath is done by reducing the power 
in a closed control during the process. Control of the molten bath can be done with a 
CMOS camera and a closed-loop control algorithm controlling the dilution and hardness 

of the coatings by keeping the values constant110. The temperature is controlled by 

pyrometers or thermographic cameras. However, measurements in this process are 

characterised by the noise caused by the injected powder111, making it difficult to obtain 

a clean reading of the temperature and geometry of the molten bath. 

 

108 Adrita Dass et Atieh Moridi, « State of the Art in Directed Energy Deposition: From Additive 
Manufacturing to Materials Design », Coatings 9 (29 juin 2019): 418, 
https://doi.org/10.3390/coatings9070418. 
109 Mohammad H. Farshidianfar, Amir Khajepouhor, et Adrian Gerlich, « Real-Time Monitoring and 
Prediction of Martensite Formation and Hardening Depth during Laser Heat Treatment », Surface and 
Coatings Technology 315 (15 avril 2017): 326‑34, https://doi.org/10.1016/j.surfcoat.2017.02.055. 
110 J. T. Hofman et al., « A Camera Based Feedback Control Strategy for the Laser Cladding Process », 
Journal of Materials Processing Technology 212, no 11 (1 novembre 2012): 2455‑62, 
https://doi.org/10.1016/j.jmatprotec.2012.06.027. 
111 Ahmad Mozaffari et al., « Optimal Design of Laser Solid Freeform Fabrication System and Real-Time 
Prediction of Melt Pool Geometry Using Intelligent Evolutionary Algorithms », Applied Soft Computing, 
Hybrid evolutionary systems for manufacturing processes, 13, no 3 (1 mars 2013): 1505‑19, 
https://doi.org/10.1016/j.asoc.2012.05.031. 
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Figure 36. Image of temperatura measurement with a thermal camera. 

However, alterations in the mean noise amplitude have been related to process instabilities 

such as damage to the laser head protective lens112 or oxidation and dilution problems113. 
Aligning the chamber coaxially is strongly recommended as the lateral arrangement, 
although simpler, can lead to measurement errors. 

This type of control improves the profile of the deposited material by reducing its waviness 
and therefore stabilises the cutting forces to which the tool is subjected in subsequent 

machining. It also makes it possible to monitor defects such as lack of fusion or porosity114. 
However, it is not clear what effect power control has on the efficiency of the process and 
whether the deposited layer height remains constant using this type of control. 

Power control is critical in thin substrate coating applications such as pipelines for the 
petrochemical sector. In such cases the temperature rise with process time is excessive and 
leads to severe damage to the substrate. An example of this control is the CLAMIR system 
for the control of coatings manufactured by DED [New Infrared Technologies]. 

 Layer height: Controlling the height of the applied layer is also critical. If the deposited 

layer grows less than calculated, after several layers the deposition distance between 

 

112 Pedro Ramiro et al., « Characteristics of Fe-Based Powder Coatings Fabricated by Laser Metal 
Deposition with Annular and Four Stream Nozzles », Procedia CIRP, 10th CIRP Conference on Photonic 
Technologies [LANE 2018], 74 (1 janvier 2018): 201‑5, https://doi.org/10.1016/j.procir.2018.08.094. 
113 Guijun Bi et al., « Identification and Qualification of Temperature Signal for Monitoring and Control in 
Laser Cladding », Optics and Lasers in Engineering 44, no 12 (1 décembre 2006): 1348‑59, 
https://doi.org/10.1016/j.optlaseng.2006.01.009. 
114 Zhong Yang Chua, Il Hyuk Ahn, et Seung Ki Moon, « Process Monitoring and Inspection Systems in 
Metal Additive Manufacturing: Status and Applications », International Journal of Precision Engineering 
and Manufacturing-Green Technology 4, no 2 (1 avril 2017): 235‑45, https://doi.org/10.1007/s40684-017-
0029-7. 
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the laser head and the substrate will be greater, causing a poor deposition process and 

generating a dimensionally defective structure115. 

This layer control can be performed during the deposition process by triangulating a 

coaxial laser beam of a different wavelength than the deposition laser116 and varying the 

deposition rate117 so that the layer grows as much as required. Height control can also 

be performed by stopping the process between layers, obtaining the actual input 
geometry using structured light and adapting the trajectories to the differences with the 

programmed geometry118. 

It is important to point out that both the laser height control and the control of the molten 
bath and temperature are carried out coaxially. This fact, together with the fact that they 
influence different process parameters, can cause space problems to integrate all the 
necessary sensors and incompatibilities in the control strategies if they are not 
developed as a joint control.  

The height control developed within the European PARADDISE project by Siemens 
using a Precitec sensor based on interferometry [Siemens, Height control] for the laser 

beam process is a clear example119. 

 Powder Flow: One of the problems with monitoring the flow in laser sputtering 

processes is the low powder flow rate (between 5 and 20 g-min-1) compared to other 
processes such as thermal spraying. Monitoring systems based on the weight of 
gravimetric feeders are often not effective in generating a uniform flow in these cases 
and this can result in a deposition process with significant variations in the amount of 

material deposited120. This is why, to monitor the powder flow in the laser deposition 

process, optical sensors are often used in the flow path due to the direct impact that the 
powder in the flow has on the intensity of the light that can be detected [MEDICOAT, 
Flow Watch]. A photoresistor transforms this light intensity into a voltage that allows the 

 

115 Andrew J. Pinkerton et Lin Li, « The Significance of Deposition Point Standoff Variations in Multiple-
Layer Coaxial Laser Cladding (Coaxial Cladding Standoff Effects) », International Journal of Machine 
Tools and Manufacture 44, no 6 (1 mai 2004): 573‑84, https://doi.org/10.1016/j.ijmachtools.2004.01.001. 
116 Simone Donadello et al., « Monitoring of Laser Metal Deposition Height by Means of Coaxial Laser 
Triangulation », Optics and Lasers in Engineering 112 (1 janvier 2019): 136‑44, 
https://doi.org/10.1016/j.optlaseng.2018.09.012. 
117 « Additive Manufacturing: New Process Improves Speed and Reliability », fw_Inspiring, siemens.com 
Global Website, s. d., https://www.siemens.com/global/en/company/stories/research-
technologies/additivemanufacturing/additive-manufacturing-laser-metal-deposition.html. 
118 Iker Garmendia et al., « Structured Light-Based Height Control for Laser Metal Deposition », Journal 
of Manufacturing Processes 42 (1 juin 2019): 20‑27, https://doi.org/10.1016/j.jmapro.2019.04.018. 
119 « ADDITIVE MANUFACTURING APPARATUS AND METHOD - US20210039167 », 2020, 
https://patentscope.wipo.int/search/es/detail.jsf?docId=US317629321. 
120 Vishnu Thayalan et Robert G. Landers, « Regulation of Powder Mass Flow Rate in Gravity-Fed Powder 
Feeder Systems », Journal of Manufacturing Processes 8, no 2 (1 janvier 2006): 121‑32, 
https://doi.org/10.1016/S1526-6125(06)80007-1. 
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flow to be monitored and to act directly on the powder feeder depending on the signal 
generating a closed-loop control.  

As the flow is carried several meters to the injectors in the die, a control system with 
short response times is complicated, so these control systems are used to ensure a 
stable flow during the process. Powder characteristics such as size, density or surface 
area have a direct effect not only on the flow provided by the feeder but also on the 
response of the sensor. 

 Verification of the geometry obtained: The low dimensional accuracy of the process 

coupled with the uncertainty of the final geometry obtained makes an inspection prior to 
the machining stage necessary. In repair and coating applications there is also an 
uncertainty of the initial substrate geometry so the substrate must also be inspected 
before the additive process.  

This inspection stage is more critical in hybrid additive manufacturing machining as its 
main advantage is to incorporate both processes without the need to move the part. This 
eliminates errors associated with geometry manipulation and mismatch. However, for 
this solution to be fully realised, an in-situ measurement system must also be 
incorporated.  

 

 

Figure 37. Measurement of a coating applied by laser using structured light. 

Although various methods have been studied in other additive technologies121, not many 

alternatives have been studied for laser cladding processes. Siemens has incorporated into its 

NX software the inspection of additive parts using a stylus to validate quality122 and other work 

 

121 Magdalena Cortina et al., « Latest Developments in Industrial Hybrid Machine Tools That Combine 
Additive and Subtractive Operations », Materials 11, no 12 (décembre 2018): 2583, 
https://doi.org/10.3390/ma11122583. 
122 « Tecnomatix Digital Manufacturing Software | Siemens Software », Siemens Digital Industries 
Software, s. d., https://plm.sw.siemens.com/en-US/tecnomatix/. 
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has focused on 3D laser scanning123 or structured light measurement systems124 integrated 
into the machine itself. 

In the case of WAAM - Wire Arc Additive Manufacturing technology, the main process 
parameters to be controlled are the signal intensity, voltage, wire feed, speed of the moving 
system, etc.  

The following figure shows the monitoring of the energy used during the WAAM process in the 
manufacture of a single aeronautical hardware and in the manufacture of three aeronautical 
hardware in matrix form. 

 

  

Figure 38. Monitored energy during the manufacture of a single aeronautical fitting (left) and during the 
manufacture of three matrix-shaped aeronautical fittings (right). 

 

On the other hand, elements such as vision systems, geometric lasers, pyrometers, etc. have 
sometimes been integrated: 

 Visual control systems: Several studies have shown that in order to reduce defects 
in the parts, the most important thing is to control the width and height of the wall, and 

 

123 Yuan Liu, Thomas Bobek, et Fritz Klocke, « Laser Path Calculation Method on Triangulated Mesh for 
Repair Process on Turbine Parts », Computer-Aided Design 66 (1 septembre 2015): 73‑81, 
https://doi.org/10.1016/j.cad.2015.04.009. 
124 Amaia Alberdi et al., « Egituraturiko argiaren aplikazioak fabrikazio hibridoaren bidez pieza metalikoak 
ekoizteko », EKAIA EHUko Zientzia eta Teknologia aldizkaria, 2 avril 2019, 
https://doi.org/10.1387/ekaia.19829. 
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for this, on-line monitoring of the melt pool is an essential part of the control. In these 

cases, visual control systems are commonly used for this application125 126 127. 
 Geometric laser: Another control strategy for WAAM processes is often the scanning 

of each layer after deposition with a geometric laser. This provides three-dimensional 
information of the deposited weld beads in the form of a point cloud and allows the 
deviation in the height and width of each layer to be monitored and the parameters of 

the next layer to be adjusted to compensate for this128. 
 Oxygen level gauges: Oxygen level gauges are used for materials that require an 

enclosed space with a controlled atmosphere for deposition to ensure the quality of the 

manufacturing atmosphere129. 
 Pyrometers: Another control method is the monitoring of the melting pool temperature 

by means of pyrometers130, since, in the WAAM process, temperature is a fundamental 
parameter due to the complicated thermal history of the parts manufactured by this 
method.  

As an example, at Chalmers University they are working on WAAM technology using a robot 
and a table with an additional rotation for LMD technology. The most characteristic feature of 
their system is that it focuses on an exhaustive monitoring of the process, with up to 3 cameras 

in the head, as can be seen in the figure below131. In addition, the latest version of the system 
incorporates a laser scanner mounted on a protective housing. In the latest version of the 
system, a laser scanner mounted on a protective housing has been incorporated. 

 

  

 

125 Zengxi Pan et al., « Arc Welding Processes for Additive Manufacturing: A Review », in Transactions 
on Intelligent Welding Manufacturing, éd. par Shanben Chen, Yuming Zhang, et Zhili Feng, Transactions 
on Intelligent Welding Manufacturing (Singapore: Springer, 2018), 3‑24, https://doi.org/10.1007/978-981-
10-5355-9_1. 
126 Y. M. Zhang, H. S. Song, et G. Saeed, « Observation of a Dynamic Specular Weld Pool Surface », 
Measurement Science and Technology 17, no 6 (mai 2006): L9, https://doi.org/10.1088/0957-
0233/17/6/L02. 
127 Jun Xiong et al., « Vision-Sensing and Bead Width Control of a Single-Bead Multi-Layer Part: Material 
and Energy Savings in GMAW-Based Rapid Manufacturing », Journal of Cleaner Production 41 (1 février 
2013): 82‑88, https://doi.org/10.1016/j.jclepro.2012.10.009. 
128 Almir Heralić, Anna-Karin Christiansson, et Bengt Lennartson, « Height Control of Laser Metal-Wire 
Deposition Based on Iterative Learning Control and 3D Scanning », Optics and Lasers in Engineering 50, 
no 9 (1 septembre 2012): 1230‑41, https://doi.org/10.1016/j.optlaseng.2012.03.016. 
129 T. Artaza et al., « Design and Integration of WAAM Technology and in Situ Monitoring System in a 
Gantry Machine », Procedia Manufacturing, Manufacturing Engineering Society International Conference 
2017, MESIC 2017, 28-30 June 2017, Vigo (Pontevedra), Spain, 13 (1 janvier 2017): 778‑85, 
https://doi.org/10.1016/j.promfg.2017.09.184. 
130 Artaza et al. 
131 Almir Heralic, « Monitoring and Control of Robotized Laser Metal-Wire Deposition », 2012, 82, 
https://www.semanticscholar.org/paper/Monitoring-and-Control-of-Robotized-Laser-
Heralic/76527b9a6ea6a1c8256e1b23884d991de56759e0. 
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